

IMPLEMENTATION OF A DYNAMIC PROGRAMMING ALGORITHM FOR DNA

SEQUENCE ALIGNMENT ON THE CELL MATRIX ARCHITECTURE

by

Bin Wang

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

 _____________________ _____________________

Donald H. Cooley Lisa J. K. Durbeck
Major Professor Committee Member

_____________________ _____________________
Nicholas J. Macias Daniel Watson
Committee Member Committee Member

Dr. Thomas Kent

Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2002

 ii

Copyright  Bin Wang 2002

All Rights Reserved

 iii

ABSTRACT

Implementation of a Dynamic Programming Algorithm for DNA

Sequence Alignment on the Cell Matrix Architecture

by

Bin Wang, Master of Science

Utah State University, 2002

Major Professor: Dr. Donald H. Cooley
Department: Computer Science

 DNA sequence alignment is an important tool for modern molecular biology. The

algorithm used by most sequence alignment tools is the dynamic programming algorithm

introduced by Needleman and Wunsch in 1970. This algorithm has a time complexity of

O(n2), where n is the length of the input sequence. This dynamic programming algorithm

has been implemented on a new parallel computing architecture called Cell Matrix.

The approach taken in this work was to configure a block of Cell Matrix cells as a custom

processor to perform the comparison and scoring function in the dynamic programming

algorithm. The custom processors were then configured into a 2D array that closely

matched the dynamic programming algorithm and allowed them to function in parallel.

For an appropriately large Cell Matrix, the implementation in this thesis achieves a time

complexity of O(n) in finding the optimal alignment score for two DNA sequences.

(37 pages)

 iv

To my wife.

 v
ACKNOWLEDGMENTS

 I would like to thank Dr. Donald H. Cooley for introducing me to the exciting

nanocomputing architecture Cell Matrix. I would especially like to thank Nicholas J.

Macias and Lisa J. K. Durbeck at the Cell Matrix Corporation for making available to me

the designing and testing tools used in this thesis. I would also like to thank my thesis

committee members, Donald H. Cooley, Lisa J. K. Durbeck, Nicholas J. Macias, and

Daniel Watson, for their guidance and support.

 I give special thanks to my family, especially my wife, Fang Zhang. I could not

have done it without their continuous encouragement and support.

Bin Wang

 vi
CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

LIST OF FIGURES... vii

CHAPTER

I. INTRODUCTION .. 1

Sequence Alignment and Molecular Biology.. 1
Dynamic Programming Algorithm for Sequence Alignment 4
Cell Matrix Architecture ... 8

II. DESIGN AND IMPLEMENTATION .. 13

Processor Design.. 13
Implementation on Cell Matrix Architecture ... 16

III. RESULTS AND CONCLUSIONS ... 28

Testing Results... 28
Timing of the Alignment .. 30
Discussion.. 32
Summary and Future Work... 36

REFERENCES.. 37

 vii
LIST OF FIGURES

Figure Page

1 Sequence alignment of v-sys and PDGF protein sequence................................. 3

2 Example of the Needleman-Wunsch algorithm for DNA

sequence alignment... 7

3 A Cell Matrix cell configured as a 1-bit full adder... 10

4 Custom processor design .. 14

5 Sequence comparison unit... 17

6 A Cell Matrix cell configured as a 1-bit full adder and
a 9-bit adder.. 18

7 +/-1 unit and –2 unit design... 20

8 Modified adder to perform the function of A-B... 22

9 MAX selection unit ... 24

10 Cell Matrix implementation of the custom processor....................................... 25

11 Cell Matrix circuits for initializing the processor array
and the layout of the 2D processor array ... 27

12 Cell Matrix circuit for A-B tested using a Cell Matrix simulator 29

13 Testing of the custom processor array ... 31

14 Timing of the sequence alignment... 33

 1
CHAPTER I

INTRODUCTION

Sequence Alignment and Molecular
Biology

 An organism’s genetic and functional information is stored as DNA, RNA, and

proteins. These biological macromolecules are very complicated, composed of thousands

or even millions of atoms chemically bonded together with complex 3-dimensional

atomic structures. However, they are all polymer chains assembled from a fixed alphabet

of well-understood chemicals. DNA is made up of four deoxyribonucleotides (adenine,

thymine, cytosine, and guanine, or A T C G). RNA is made up of four ribonucleotides,

and protein is made up of 20 amino acids. Because they are linear chains of defined

components, they can be represented as sequences of symbols. The sequences of these

macromolecules contain considerable information about their biological functions. In a

DNA chain, the four deoxyribonucleotides can occur in any order, and the order they

occur determines the DNA’s biological function. In a protein, the amino acid sequence

determines its 3D atomic structure and function. Sequence analysis of these

macromolecules now plays an important role in modern molecular biology. For example,

feature detection and pattern recognition are very useful tools to understand biological

functions of new gene sequences that have not been characterized by traditional

molecular biological experiments. With the development of modern methods for DNA

sequencing, a huge amount of data has been and is being generated, especially for the

human genome project. It is impossible to do any useful sequence analysis on this scale

without the help of a computer. Many sequence analysis tools have been developed to

 2
assist molecular biologists. Because of the huge amount of data now available and the

development of computer tools, sequence analysis is becoming increasingly powerful.

Sequence alignment is one of the most important operations in computational

biology, facilitating everything from identification of gene function to structure

prediction of proteins. Alignment of two sequences shows how similar the two sequences

are, where there are differences between them, and the correspondence between similar

subsequences. All of this represents important information for biologists. For example,

sequences which are similar may also share a common origin, such as a common ancestor

sequence, and thus may have similar or related 3D atomic structure and biological

functions. A similar subsequence between two genes with similar function might

represent a sequence that is critical to the common function of these two genes. As a

result, this sequence remains largely unchanged through evolution, such as the protein

sequence that forms the catalytic center of an enzyme. In 1983 sequence alignment

assisted in the discovery of the link between cancer-causing genes (oncogenes) and genes

involved in normal growth and development of the cell [2, 10]. Oncogene v-sys in the

simian sarcoma virus causes uncontrolled cell growth and leads to cancer in monkeys.

Growth factor PDGF is a protein that exists transiently in normal cells and stimulates

normal cell growth. When the sequences of these two proteins are aligned, they show

over 85% similarity (Figure 1). The sequence similarity between these two proteins

suggests that the simian sarcoma virus causes cancer by using its v-sys to stimulate cell

growth through the same pathway as PDGF. This observation led to the conclusion that

cancer may be caused by a normal cell growth pathway being switched on at the wrong

time.

 3

LALIGN finds the best local alignments between two sequences
 version 2.2u00 November 2001
Please cite:
 X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381

alignments < E(0.05):score: 54 (50 max)
 Comparison of:
(A) @ v-sys - 245 aa
(B) @ PDGF - 295 aa
 using matrix file: BL50, gap open/ext: -12/-2 E(limit) 0.05

 85.5% identity in 249 aa overlap (2-245:47-295); score: 1407 E(10000): 1.8e-108

 10 20 30 40 50 60 70
v-sys ISSIMIANSARCMAVIRSMT-----LTWQGDPIPEELYKMLSGHSIRSFDDLQRLLQGDSGKEDGAELDLNMTRS
 : . .:: :: :.. :. .. .:::::::::.::: :::::::::::::.:: :.:::::::::::::
PDGF IENSHMANMNRCWALFLSLCCYLRLVSAEGDPIPEELYEMLSDHSIRSFDDLQRLLHGDPGEEDGAELDLNMTRS
 50 60 70 80 90 100 110 120

 80 90 100 110 120 130 140
v-sys HSGGELESLARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTNANFLVWPPCVEVQRCSGCCNNRNVQCR
 ::::::::::::.::::::..::
PDGF HSGGELESLARGRRSLGSLTIAEPAMIAECKTRTEVFEISRRLIDRTNANFLVWPPCVEVQRCSGCCNNRNVQCR
 130 140 150 160 170 180 190

 150 160 170 180 190 200 210 220
v-sys PTQVQLRPVQVRKIEIVRKKPIFKKATVTLEDHLACKCEIVAAARAVTRSPGTSQEQRAKTTQSRVTIRTVRVRR
 ::::::::::::::::::::::::::::::::::::::: ::::: :::::: :::::::: :.:::::::::::
PDGF PTQVQLRPVQVRKIEIVRKKPIFKKATVTLEDHLACKCETVAAARPVTRSPGGSQEQRAKTPQTRVTIRTVRVRR
 200 210 220 230 240 250 260 270

 230 240
v-sys PPKGKHRKCKHTHDKTALKETLGA
 :::::::: :::::::::::::::
PDGF PPKGKHRKFKHTHDKTALKETLGA
 280 290

Figure 1. Sequence alignment of v-sys and PDGF protein sequence. Identical
sequences are highlighted. The PDGF and v-sys sequences were obtained from the
SWISS-PROT protein knowledgebase (http://www.expasy.ch/sprot/). Sequence
alignment was performed using the LALIGN tool in the FASTA sequence analysis
software package (http://fasta.bioch.virginia.edu/).

 4
Dynamic Programming Algorithm for
Sequence Alignment

To form an alignment between two sequences, spaces may be inserted in arbitrary

positions in the sequences so that they end up with same length, and then each character

or space in one sequence will have a corresponding character or space in the other

sequence. An alignment score can then be assigned to such an alignment: if a character

in sequence A matches its corresponding character in sequence B, it will receive a score

of 1 (match); otherwise it will receive a score of –1(mismatch), and if one of the two

characters is a space, it will receive a score of –2 (gap), and the total score over the whole

sequence is the score of this alignment. The optimal alignment problem is to find the

maximal score of all possible alignments between two sequences. This maximal score

can be used to measure the similarity between the two sequences. This scoring scheme is

closely related to the concept of edit distance between two sequences introduced by

Levenshtein in 1966 [5]. The Levenshtein edit distance from sequence A to sequence B is

defined as the minimal number of edit actions to change A into B, where the edit actions

are substitution, insertion, and deletion. Here mismatch corresponds to substitution, and

gap corresponds to insertion or deletion. Both of them have negative score values. In

order to maximize the total score of alignment, the number of mismatches and gaps in the

alignment must be minimized.

Clearly, to solve this alignment score problem, an efficient algorithm other than

simply generating all possible alignments between two sequences must be used. The

number of possible alignments between two sequences increases exponentially as the

sequences get longer. Needleman and Wunsch first introduced a dynamic programming

 5
algorithm for comparing two sequences in 1970 [8]. It is the basic algorithm for most

pair-wise sequence alignment tools used today by molecular biologists. Because of

various applications of sequence alignment, this algorithm has been discovered and re-

discovered many times, including speech processing and text editing. The algorithm

solves an instance of the problem by taking advantage of computed solutions for smaller

instances of the same problem. To find optimal alignment score F[i, j] of two sequences

s[1...i] and t[1...j], we can break it down into three smaller problems:

• Find optimal alignment score F[i, j-1] of s[1...i] and t[1...j-1], and

• Find optimal alignment score F[i-1, j-1] of s[1...i-1] and t[1...j-1], and

• Find optimal alignment score F[i-1, j] of s[1...i-1] and t[1...j].

If we know the solutions of these three smaller problems: F[i, j-1], F[i-1, j-1], and F[i-1,

j], we can find optimal alignment score F[i, j] of s[1...i] and t[1...j] because optimal

alignment of s[1...i] and t[1...j] can only be one of the following possibilities:

• Align s[1...i] with t[1...j-1] and match a space with t[j], or

• Align s[1...i-1] with t[1...j-1] and match s[i] with t[j], or

• Align s[1...i-1] with t[1...j] and match s[i] with a space.

The optimal alignment scores for each are:

• F[i, j-1] – 2 (-2 for a gap between a space and t[j])

• F[i-1, j-1] ± 1 (+1 for match if s[i] = t[j], -1 for mismatch if s[i] ≠ t[j])

• F[i-1, j] – 2 (-2 for a gap between s[i] and a space)

Then the optimal alignment score for s[1...i] and t[1...j] is the largest value of the three:

 6








−−
±−−

−−
=

2],1[

1]1,1[

2]1,[

],[

jiF

jiF

jiF

MAXjiF

This algorithm uses a (i+1)*(j+1) size score matrix F. F[m, n] is the optimal alignment

score for s[1...m] and t[1...n]. The values for F[0, 0], F[0, n], and F[m, 0] are known:

• F[0, 0] = 0 because it is the score of the alignment between two empty sequences.

• F[0, n] = -2*n, F[m, 0] = -2*m because they are the scores for aligning an empty

sequence to another sequence of length n or m, resulting in a gap of length n or m.

Then the score matrix can be filled from F[1, 1], row by row, left to right in each row, or

any other order that makes sure F[m, n-1], F[m-1, n-1], and F[m-1, n] are available when

computing F[m, n]. After the whole score matrix is filled, F[i, j] will be the score for the

optimal alignment of s[1...i] and t[1...j], and the optimal alignment can be recovered from

the score matrix F by tracing which of the three choices was chosen to compute F[m, n]

from F[i, j] all the way back to F[1, 1].

 An example of this dynamic programming algorithm is shown in Figure 2. The

two sequences in this example are GACGGATTAG and GATCGGAATAG. The score of

the optimal alignment is shown in the right bottom corner of the score matrix F: F[10,

11]=6. The optimal alignment is also shown in the figure.

 This algorithm has a space complexity proportional to the size of the score matrix

F, which is ()jiO × . Since the cells in the score matrix F must be filled one by one, this

algorithm also has a time complexity of ()jiO × , or ()2iO if the two sequences have

nearly the same length, i.

 7

Score matrix F:

 G A C G G A T T A G

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20
G -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17
A -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14
T -6 -3 0 1 -1 -3 -5 -5 -7 -9 -11
C -8 -5 -2 1 0 -2 -4 -6 6 -8 -10
G -10 -7 -4 -1 2 1 -2 -4 -6 -7 -7
G -12 -9 -6 -3 0 3 1 -1 -3 -5 -6
A -14 -11 -8 -5 -2 1 4 2 0 -2 -4
A -16 -13 -10 -7 -4 -1 2 3 1 1 -1
T -18 -15 -12 -9 -6 -3 0 3 4 2 0
A -20 -17 -14 -11 -8 -5 -2 1 2 5 3
G -22 -19 -16 -13 -10 -7 -4 -1 0 3 6

Optimal alignment:

 GA-CGGATTAG
 || |||| |||
 GATCGGAATAG

Score for optimal alignment:
 F[10,11]=6

Figure 2. Example of the Needleman-Wunsch algorithm for DNA sequence
alignment.

 8
 If this algorithm is implemented on a parallel computing architecture, the cells in

the score matrix can be filled in parallel instead of one by one, and thus the time

complexity can be greatly reduced. For example, after F[1, 1] is computed, both F[1, 2]

and F[2, 1] are ready to be computed because all the elements needed are there: F[1, 1]

F[0, 1] F[0, 2] for F[1, 2] and F[2, 0] F[1, 0] F[1, 1] for F[2, 1]. After F[1, 2] F[2, 1] are

computed, F[2, 3] F[2, 2] F[3, 2] are ready to be computed. This can be done from the top

left corner to the bottom right corner in a wave front style and computation time can be

cut to ()22 jiO + , which is the length of the diagonal of the score matrix F, or ()iO if

the two sequences have similar lengths.

To implement this dynamic algorithm on a parallel computing architecture, a

large number of processors would have to be used to compute the values in score matrix

cells in parallel. The Cell Matrix architecture provides a good parallel computing

platform to implement this dynamic algorithm.

Cell Matrix Architecture

The Cell Matrix architecture is a nanocomputing platform developed by the

Cell Matrix Corporation in Salt Lake City, Utah [3]. Unlike traditional CPU/memory

architectures, the hardware of the Cell Matrix architecture is homogeneous. The basic

element of a Cell Matrix is called a cell. Cells are repeated and interconnected to form the

basic architecture of a Cell Matrix. Each cell accepts inputs from its neighbor cells,

processes the inputs based on its internal reconfigurable memory, and then outputs the

result to its neighbor cells. Cells in the architecture are physically identical, which

simplifies the manufacture process. After manufacture, cells can be configured to

 9
perform different functions, and the collection of different configured cells can form

various digital circuits to perform complex computations.

An example of a Cell Matrix cell is shown in Figure 3. This is a four-sided cell

that forms a two dimensional Cell Matrix with each cell connected to four neighbors.

Other topologies are also possible: six-sided cells can form a Cell Matrix with a

honeycomb-like structure. Each cell has a data input, a data output, a control input, and a

control output on each side. It also has an internal memory of 16 rows by eight columns.

A cell can operate in one of two modes: data mode and control mode. In data mode, all of

the control inputs are 0 and the cell is a pure combinatorial device. It uses its four data

inputs and the internal memory to determine its outputs. In control mode, one of the four

control inputs is 1. In this mode, the cell’s internal memory can be reconfigured. The data

input is serially shifted into the cell’s internal memory according to a systemwide clock.

After this cell returns to data mode, the reconfigured memory will control the cell’s

behavior. A cell can be configured to perform many different functions, such as a piece

of wire, a logic gate, and more complex functions. The cell shown in Figure 3 is

configured as 1-bit full adder. It adds data inputs from north, south, carry input from

west, and outputs the result to south and carry to west. Several such configured cells can

be linked together to form an n-bit adder. More complex circuits can be implemented on

this Cell Matrix architecture, such as arithmetic logic units (ALU) and memory in a

traditional CPU/memory architecture.

Because the cells can be individually configured, this architecture supports a one-

problem, one-machine model of computing. The circuit can be specifically designed for

the particular problem to be solved, and thus could solve the problem faster or better than

 10

DW

DN CN DN CN

CW

DW

CW

CE

DE

CE

DE

DS CS DS CS

A

B ΣΣout

CinCout

DW

DN CN DN CN

CW

DW

CW

CE

DE

CE

DE

DS CS DS CS

DW

DN CN DN CN

CW

DW

CW

CE

DE

CE

DE

DS CS DS CS

A

B ΣΣout

CinCout

Cell’s internal memory configuration:

Inputs Outputs

DN DS DW DE CN CS CW CE DN DS DW DE
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1 1 0

Cell’s memory expressed using Boolean equation:

 DS = DN&DS&DE + DN&~DS&~DE + ~DN&DS&~DE + ~DN&~DS&DE
 DW = DN&DS + DS&DE + DE&DN

Figure 3. A Cell Matrix cell configured as a 1-bit full adder.

 11
an implementation on a general-purpose machine. This architecture also provides a good

platform for distributed and parallel computing. Different parts of the hardware can be

configured to perform different tasks, or similar tasks with different data. Thus, this

problem can be distributed spatially rather than temporally achieving massively parallel

computing. Because of its support for distributed and parallel computation, an extremely

large number of switches can be efficiently implemented on a Cell Matrix architecture.

An example is a DES cracker constructed using a Cell Matrix [3]. This DES cracker uses

an array of custom processors and divides the search space efficiently among these

processors. This design can achieve ()1O run time in finding an encryption key. Another

important feature of the Cell Matrix architecture is that a cell’s internal memory can be

reconfigured by other cells in the architecture. This leads to dynamic, self-modifying

circuits. Some interesting examples of this feature include a ringed GA [6, 7], evolvable

hardware, and run-time, fault-tolerant hardware.

The dynamic algorithm for DNA sequence alignment can also be efficiently

implemented on a Cell Matrix architecture due to its support for distributed and parallel

computing. The algorithm has a space complexity (number of processors) of ()2iO and a

time complexity lower bound of ()iO when implemented on a parallel computing

architecture. The goal of this work is to present a sequence alignment system that

achieves this lower bound time complexity and falls within the space complexity. This

lower bound time complexity of ()iO has not been achieved yet and no research has

demonstrated such a sequence alignment machine. The approach taken in this work is to

configure a block of cells in a Cell Matrix as a custom processor to perform the function

 12
of computing the values in the score matrix F. Parallelism is archived by linking these

custom processors into a 2D processor array. Each of the processors constantly computes

its value based on its inputs and outputs its result to the next processor. Sequence data are

input from the top and left edges of the 2D array. When the processor array is stabilized,

the right bottom processor unit contains the value of the optimal alignment score.

A different approach to this problem is to code the algorithm for a multiprocessor

machine or a cluster of machines. However, to achieve the lower bound time complexity,

an extremely large number of processors are needed. Processor latency and inter-

processor communication delay will become a serious problem. The approach taken in

this work allows a system design that closely resembles the original algorithm. And, by

carefully designing the custom processor, the processor latency and interprocessor

communication can be greatly reduced, resulting in a better constant factor for the time

complexity. Also, because the custom processor is much simpler than a general purpose

processor, the hardware requirement is reduced.

 13
CHAPTER II

DESIGN AND IMPLEMENTATION

Processor Design

Implementation of this dynamic algorithm on a parallel computing architecture,

such as a Cell Matrix, requires a 2D array of processors. Each processor is responsible for

the value of one cell in the score matrix, and they work in parallel to compute the values

in the score matrix. In the Cell Matrix architecture, a block of Cell Matrix cells can be

configured as such a custom processor. Figure 4A shows the basic design of the custom

processor unit. The processor unit has five inputs, two of which contain the sequence data

s[i] and t[j]; the other three inputs are computed as score matrix cell values from its

neighboring processors. The processor performs the following function:








−−
±−−

−−
=

2],1[

1]1,1[

2]1,[

],[

jiF

jiF

jiF

MAXjiF

The processor compares the sequence data inputs s[i] and t[j], and adds or subtracts one

from F[i-1, j-1] according to the comparison result. It also subtracts two from F[i, j-1] and

F[i-1, j]. These three results are then compared. The largest one is the value of F[i, j] and

this value is passed to its neighboring processors, which use this value to compute their

values.

 There are several basic circuits in the processor. Each performs a simple

function, and they work together to perform the function of computing a value for the

score matrix. These basic circuits are shown as boxes inside the processor in Figure 4A.

First, a sequence comparison unit is required to compare the sequence data s[i] and t[j].

 14

 Figure 4. Custom processor design.

A

B

 15
The result of this comparison is used to control the +/-1 unit, which adds or subtracts

one from F[i-1, j-1] according to the result of the comparison. Two –2 units are used to

subtract 2 from F[i, j-1] and F[i-1, j]. And finally a MAX unit is used to select the largest

value and pass the value to its neighboring processors.

 This design requires the processor exchanging information with its six neighbors,

two of which are on its diagonal, F[i-1, j-1] and F[i+1, j+1]. However, four-sided cells in

a Cell Matrix cannot directly pass information diagonally, because data inputs/outputs are

only on the side of the cell and diagonally linked cells do not share sides or data

inputs/outputs. So this kind of information exchange must be routed through their

neighbors, and the scheme shown in Figure 4B is a method to do so. Here, each processor

unit will have an extra input and an extra output connected directly to each other in its

upper right corner. This connection can pass information from the neighbor above it to

the neighbor on its right. Otherwise these two diagonally linked processors cannot

exchange information.

 In this design, different values in the sequence data are represented using 3 bits:

000 for A, 001 for G, 010 for C, and 011 for T. The first bit is reserved for other possible

sequence data values, such as U (uracil) in the RNA sequence, or N for bad sequence

read out. Values in the score matrix F are represented using 9 bits. The first bit is the sign

bit. Negative numbers are represented in 2’s complement format. This gives a range of

-256 to +255, which is enough to align two DNA sequences up to 127 base pairs. This

architecture can be easily scaled up for longer sequence alignment.

 16
Implementation on Cell Matrix
Architecture

 The custom processor was designed and implemented using the Cell Matrix

Layout Editor development tool from the Cell Matrix Corporation. This Layout Editor

provides a graphical user interface for designing Cell Matrix circuits. It allows the

developer to lay out four-sided Cell Matrix cells in a 2D grid, edit the content/memory of

individual cells, and create circuits using collections of differently configured Cell Matrix

cells. It provides several other useful functions, such as copy and paste cells, rotate cells

within the grid, and create icons to represent different cells. And finally, the grid

containing the circuit can be written out as a .bin file, which can be read and tested using

the Cell Matrix Simulator.

 The sequence comparison unit requires a 3x3 Cell Matrix block shown in Figure

5A. Sequence data inputs are on the top and left edges of the unit. Corresponding bits of

the sequence data are compared, and the output of the unit is the logical AND of the three

individual bit comparison results. This sequence comparison unit’s output is 1 when two

input sequence data are the same, and 0 otherwise. The truth table configurations for each

of the nine cells are shown in Figure 5B. This sequence comparison unit also allows the

sequence data to pass through, so that the custom processor can pass the sequence data to

its neighboring processors.

Since all negative numbers are represented in 2’s complement format, all addition

and subtraction can be performed using adders. As shown in Chapter I, a Cell Matrix cell

can be configured as a 1-bit full adder, and several such configured cells can be linked to

form an n-bit adder. Figure 6A shows another configuration of a 1-bit full adder. Its icon

 17

DS=N
DE=W
DW=(N&W + ~N&~W) & S

DS=N
DE=W

DS=N
DE=W

DS=N
DE=W
DN=E

DS=N
DE=W
DW=(N&W + ~N&~W) & S

DS=N
DE=W

DS=N
DE=W

DS=N
DE=W
DN=E

DS=N
DE=W
DW=N&W + ~N&~W

A

B

 Figure 5. Sequence comparison unit.

 18

Truth table:
DE= W&E&S + W&~E&~S + E&~S&~W
 + S&~W&~E
DN= W&E + E&S + S&W

A

B

Figure 6. A Cell Matrix cell configured as a 1-bit full adder and a
9-bite adder.

 19
is shown on the left and its truth table is shown on the right. It adds data inputs from

west and east, carry input from the south, and outputs its sum to the east and carry to the

west. The custom processor requires a 9-bit adder since all values are represented using

nine bits. A 9-bit adder can be formed by stacking nine 1-bit full adders vertically, as

shown in Figure 6B. Data inputs are on its left and right, with high order bit on the top,

low order bit on the bottom. Carries are passed from bottom to top. The adder sends the

results to its right. The +/-1 unit and –2 unit are all based on this 9-bit adder.

The +/-1 unit adds 1 or –1 to an input value according to the output of the

sequence comparison unit. The sequence comparison unit outputs 1 when s[i]=t[j], and

the processor adds 1 to F[i-1, j-1]. Otherwise, sequence comparison unit outputs 0, and

the processor adds –1 to F[i-1, j-1]. In the +/-1 unit, F[i-1, j-1] is one of the two inputs of

the 9-bit adder. The other input of the adder is either 1 or –1, and this is controlled by the

sequence comparison unit. This input should be 1 when the sequence comparison unit’s

output is 1 (s[i]=t[j]), and –1 when the output is 0 (s[i]≠t[j]). This can be achieved by

setting the eight higher order bits to the inverse of the output of the sequence comparison

unit and lowest order bit to 1, because 1 is 000000001 and –1 is 111111111 when

represented using nine bits and in 2’s complement form. A block of nine cells can be

configured to perform such a function as shown in Figure 7A. These nine cells send a 9-

bit value to the adder on its left. The control input is on the top and passed to all nine

cells. The eight higher order bits are the reverse of the control input, and the lowest bit is

set to one at all times. The 9-bit value sent to the adder is 000000001 (=1) when control

input is 1, and 111111111 (=-1) when control input is 0. The adder adds this value to the

F[i-1, j-1] input on its left, and sends the result to its right.

 20

A B

C

Figure 7. +/-1 unit and –2 unit design.

 21
 The –2 unit is very similar to the +/-1 unit. Because it always subtracts 2 from

its input, there is no need for a control input. The adder in this unit will always have an

input of –2. The 2’s complement form of -2 is 111111110. The nine cells used to send +/-

1 to the adder can be configured to send this value to the adder at all times. The other

input to the adder will be F[i-1, j] from the neighboring process to the left, or F[i, j-1]

from the neighboring processor above. Figure 7B shows a vertically configured –2 unit

with high order bit on the top and low order bit on the bottom. This is used for F[i-1, j],

which is passed to the unit from the left. Since F[i, j-1] comes from the top, a

horizontally configured –2 unit in Figure 7C is used. The input is on the top of the unit

with high order bit on the left and low order bit on the right, and output is on the bottom

of the unit.

The sign bit of A-B can be used to compare A and B. If the sign bit of A-B is 0,

then A-B is positive and A≥B. If the sign bit of A-B is 1, then A-B is negative and A<B.

A-B can be performed using an adder if –B is represented in 2’s complement form. To

represent –B in 2’s complement format, every bit in B is inverted and then 1 is added.

This operation can be performed using a modified adder as shown in Figure 8A. Data

input is at the bottom of the unit with high order bit on the left and low order bit on the

right. The bottom nine cells invert all nine bits in the data input and pass them to the

nine-bit adder in middle of the unit. The top nine cells send 000000001 to the adder. The

adder in the middle adds this 000000001 to the inverted data input and sends result to the

top. The function of this 9x3 cellblock can also be performed using just nine cells, as

shown in Figure 8B. Another adder can be added to this unit to perform the function of

A-B, as shown in Figure 8C. Data B input is on the bottom of the unit. After data pass

 22

A

B

C

Figure 8. Modified adder to perform the function of A-B.

 23
through the bottom nine cells, B becomes –B. –B is then passed to the adder on top.

Data A input is on the top of the adder. The adder adds A to –B. The sign bit on the very

left shows which number is larger. This sign bit is the output of this unit and passed to the

right side. This output can be used to select the larger of the two inputs.

Figure 9A shows a MAX selection unit. This unit is composed of a 9x2 A-B unit

on the top and a 9x9 selection unit on the bottom. Two data inputs A and B are on the top

and left of the unit. Data B is passed to the A-B unit by the selection unit. The sign bit of

A-B is passed to the selection unit as a selection signal. This signal is 0 when A≥B and 1

when A<B. The cells on the diagonal have three inputs: A from the top, B from the left

and the selection signal from the right. It also passes B from its left to the A-B unit on the

top. The output of these cells depends on the selection signal. If A≥B, they will receive

selection signal 0 and output A. Otherwise, they output B. Thus, this MAX unit can be

used to select the larger of its two inputs. To select the largest value from three numbers,

as required in this custom processor, two of these MAX units can be linked together, as

shown in Figure 9B. A and B are the inputs of the first MAX unit. The output of this unit

is MAX (A, B). MAX (A, B) and C are the inputs of the second MAX unit. The output of

the second MAX unit is MAX (A, B, C).

The Cell Matrix implementation of the custom processor is shown in Figure 10. It

is composed of the basic processing elements shown in previous figures. The processor

has six inputs and six outputs. Sequence data s[i] and t[j] are compared in the sequence

comparison unit at the top left corner of the processor. The comparison result is then

linked to the control input of the +/-1 unit. F[i-1, j-1] input is on the middle of the left

edge and linked to the +/-1 unit. The output of +/-1 unit, F[i-1, j-1]±1, is connected to the

 24

B

C

MAX(A,B)

MAX(A,B,C)

A

B

C

MAX(A,B)

MAX(A,B,C)

A

Figure 9. MAX selection unit.

A

B

 25

Figure 10. Cell Matrix implementation of the custom processor.

 26
MAX selection unit. F[i, j-1] input is on the middle of the top edge. It is connected to a

horizontally configured –2 unit. F[i, j-1]-2 is then connected to the MAX selection unit.

F[i-1, j] inputs is also connected to a –2 unit, F[i-1, j] is the third input of the MAX

selection unit. The output of the processor is the output of the MAX selection unit. On the

top right corner is a direct pass for F[i, j-1]. This is necessary as processor [i, j-1] and

[i+1, j] cannot communicate directly.

A 2D array using this custom processor configuration is thus able to perform

DNA sequence alignment. As discussed in Chapter I, the algorithm requires that F[0, 0],

F[0, n], and F[m, 0] to be initialized to F[0, 0]=0, F[0, n]= -2*n and F[m, 0]= -2*m. Cell

Matrix circuitry can be added to the top and left edges of the 2D processor array to

initialize these values. The repeating units of the circuitry are shown in Figures 11A and

B. They use the -2 unit discussed previously to automatically generate the values required

for initialization. The 2D processor array together with these initialization circuits is

shown in Figure 11C. The two sequences are inputs on the top edge and left edge of this

2D processor array, and the right bottom corner of the processor array will have the

optimal alignment score of these two sequences.

 27

s[1] s[2] s[3] s[m]

t
[
n
]

.
.
.
.

t
[
3
]

t
[
2
]

t
[
1
]

Optimal alignment score

s[1] s[2] s[3] s[m]

t
[
n
]

.
.
.
.

t
[
3
]

t
[
2
]

t
[
1
]

Optimal alignment score

Figure 11. Cell Matrix circuits for initializing the processor array and the layout
of the 2D processor array.

A

B C

 28
CHAPTER III

RESULTS AND CONCLUSIONS

Testing Results

The testing of the design and implementation was done by first testing the low-

level components of the processor, and then testing the processor array using a

representative sample of input sequences.

All the circuitries used in the custom processor and the custom processor itself

were tested using the Cell Matrix Simulator from the Cell Matrix Corporation. This

simulator is a testing and debugging tool. After a circuit is designed using the Layout

Editor, the configurations of the cells in the circuit are written into a binary grid file, and

then read into the simulator. The simulator provides a graphical user interface for the

developers to test their circuit with different inputs, observe the behavior of the circuit,

and modify the configuration of individual cells for debugging.

Figure 12 shows the circuit used in the MAX unit to obtain the sign bit of A-B.

Each box in the figure represents a Cell Matrix cell. The arrows represent inputs and

outputs of the cells - thin lines are 0’s and thick lines are 1’s. The inputs of the cells at the

top left edge of the matrix can be changed by clicking on the arrows. Changes in the input

are propagated through the circuit. Input B, on the bottom of the circuit, cannot be

changed directly. Additional circuits were added to route B to the left edge of the matrix.

In this figure, input A is 000110011 or 51, and input B is 001101010 or 106. The output

at the top right corner shows the sign bit of A-B as 1, indicating A<B. Similar tests were

done on other components of the processor to make sure they functioned as designed.

 29

Figure 12. Cell Matrix circuit for A-B tested using a Cell Matrix Simulator.
A graphical window from the Cell Matrix Simulator, thin lines are 0’s and
thick lines are 1’s. Input A 00011011 is on the top and input B 001101010 is
on the left, sign bit of A-B, which is 1, is on the top right corner.

 30
The custom processor was configured into a 2D processor array as shown in

Figure 11C to perform sequence alignment. This required a very large number of Cell

Matrix cells (2675 n× , n is the length of the sequence). The simulator with its graphical

user interface is designed for a small number of Cell Matrix circuits. It works well for

testing and debugging such circuits, but it is slow for large circuit simulations. Another

simulator designed for large-scale simulation is available from the Cell Matrix

Corporation. This simulator provides similar functions through a command line interface

and supports batch execution of commands stored in files. Useful commands include: l,

load cell configuration stored in a binary grid file into the simulator; s, set the input of a

specific cell (this can be used to set the sequence input); p, show the input/output of a

block of cells (this can be used to exam the output of the processor array). This command

line driven simulator can handle much larger Cell Matrix circuits and the simulation is

much faster. The 2D processor array was tested with different sequence pairs, such as the

example shown in Chapter I. The processor array correctly computed the optimal

alignment scores for all sequence alignments tested (Figure 13). These tests showed that

the design and implementation of the custom processor are correct.

Timing of the Alignment

The goal of this research was to design a Cell Matrix circuit that could find the

optimal alignment score of two DNA sequences in ()nO time. To obtain timing

information about the sequence alignment circuit, the command line driven simulator was

modified by Nicholas J. Macias of the Cell Matrix Corporation to incorporate the

capturing of time units and timing results. After the input to the circuit is changed, i.e., a

 31

Input sequences Optimal alignment
Optimal alignment score

(computed by the processor array)

GGCTTTA

GGCTTTA

GGCTTTA
|||||||
GGCTTTA

7

GGCTTTA

TGCTTTA

GGCTTTA
 ||||||
TGCTTTA

5

GGCTTTA

GGTTTA

GGCTTTA
|| ||||
GG-TTTA

4

GGTTTA

GGCTTTA

GG-TTTA
|| ||||
GGCTTTA

3

GACGGATTAG

GATCGGAATAG

GA-CGGATTAG
|| |||| |||
GATCGGAATAG

6

Figure 13. Testing of the custom processor array.

 32
new pair of sequences to align, the changes are propagated through the Cell Matrix

circuit. It then takes some time for the circuit to stabilize. This time was measured by the

simulator. The unit of this measurement, represented using symbol “t”, is the propagation

delay of a single Cell Matrix cell, or the time for a Cell Matrix cell to respond to an input

change. More formally, the measurement is of the time from input change to stable output

change in the cell.

For a DNA sequence alignment circuit, the optimal alignment score was obtained

after the processor array had stabilized. Thus, the time for the circuit to stabilize is the

time for the circuit to compute the optimal alignment score. This processor array is

guaranteed to stabilize, since the processors perform simple combinational logic and the

communication between processors is also formed by simple combinational logic.

Measuring this time for processor arrays of different sizes shows how the computation

time increases with the sequence length.

The test timing results are shown in Figure 14. The time to compute the optimal

alignment score increases linearly with the length of the input sequences: ntT ×≈ 80 ,

where T is the total compute time, t is the time delay for a single Cell Matrix cell, and n is

the length of input sequences. The results show that this design achieved the goal of

finding the optimal alignment score for two sequences in ()nO time.

Discussion

 This implementation of the dynamic programming algorithm is the first sequence

alignment system that achieves ()nO time complexity. The major cost here is hardware,

not the computing time. Instead of computing the values in the score matrix F for two

 33

240

398

559

730

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12
n: sequence length (base pair)

T
:

ti
m

e
to

 c
o

m
p

u
te

 o
p

ti
m

al
 a

lig
n

m
en

t
sc

o
re

 (
u

n
it

:
t)

T = 80 t x n

 Figure 14. Timing of the sequence alignment.

 34
sequences of length n one by one using a traditional CPU/memory computer with its

single processor, a 2D nn× array of simpler custom processors was used. The problem

of finding the optimal alignment score was broken down into smaller tasks. These smaller

tasks were then distributed spatially over the processor array and performed in parallel by

individual processors in the array. As the length of the sequence increases, the size of the

processor array, or the hardware cost, also increases. Because the hardware cost increases

with a complexity of ()2nO , hardware cost becomes an important issue for long sequence

alignments.

DNA sequences encoding protein domains are typically about 1000 base pairs

long. Aligning two such sequences would require a processor array of size 106. Each

custom processor is 675 Cell Matrix cells in this design. So the processor array would

require about 7x108 cells. Current silicon techniques will scale up to about 500,000 cells

in a single chip [3], which is only enough to align two sequences of 30 base pairs each.

Thus, to use the Cell Matrix architecture, much denser manufacturing techniques are

required [3]. With the advent of nanotechnology, biology-based computing, and other

molecular engineering techniques, extremely large Cell Matrix configuration will be both

possible and practical [3]. The development of the nanocircuit has just been named the

breakthrough of the year by Science magazine [9]. Examples of the experimental

nanocircuit include carbon nanotube transistors [1] and logic gates made of nanowires

[4]. Although these nanocircuits are still very simple and rudimentary, they show

feasibility of nanocomputing. When the technology for manufacturing extremely dense

circuits becomes available, the amount of hardware required will be acceptable, and

trading hardware for reduced computing time will be reasonable.

 35
The timing result given by the Cell Matrix simulator is in terms of an abstract

unit t, which is the typical delay of a single Cell Matrix cell. This sequence alignment

system is a pure combinatorial circuit, and the computing time is a pure function of this

propagation delay t. This time t will depend on the underlying technology. By building a

small Cell Matrix on top of a FPGA and constructing a 128-cell feedback loop, the Cell

Matrix Corporation has shown that this single cell propagation delay t is approximately

3.9 ns. Using this value, the computing time for alignment is about 80t per base pair, or

about 0.3 µs per base pair. And this is an upper bound, since a FPGA implantation is

slower than custom ASIC, and likely slower than future technologies. If a large enough

Cell Matrix were available, it would align two sequences of 3 million base pairs each in

under one second. Of course, such a Cell Matrix would be extremely large, i.e., ≈ 1014

cells.

 An interesting observation in the testing is that the Cell Matrix architecture is a

powerful parallel computing architecture. The simulator runs on a single CPU computer,

and handles a single event at a time. Thus, events that should happen at the same time, or

parallel events, are put into an event queue with a time tag. The size of the queue limits

the maximum number of parallel events the simulator can handle. During testing, a Cell

Matrix circuit used to align two sequences with five base pairs each overflows an event

queue with 2 million events entries. And the circuit is a relatively small one, with less

than 20,000 cells. This really shows the power of Cell Matrix architecture dealing with

parallel computing problems.

 36
Summary and Future Work

 This research work implemented a dynamic algorithm for DNA sequence

alignment on the Cell Matrix architecture and achieved ()nO time complexity in

finding the optimal alignment score. This work also showed that Cell Matrix

architecture is a powerful parallel computing architecture.

 Another important problem after finding the optimal alignment score is to recover

the actual alignment from the score matrix F. Solving this problem will not only show

how similar two sequences are, but also where the similarities are. This would be an

interesting work based on this implementation. It would also be interesting to include

some improvements of the alignment algorithm into the design, such as a nonlinear gap

function (a big penalty for gap opening and a small penalty for gap extension, which is

more appropriate for biological evolutions), and a more complex scoring system for

protein sequence alignment.

 37
REFERENCES

1. Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, S. Logic circuits with carbon
nanotube transistors. Science 294 (2001), 1317-1320

2. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C.,
Aaronson, S.A., and Antoniades, H.N. Simian sarcoma virus onc gene, v-sys, is derived
from the gene encoding a platelet-derived growth factor. Science 221 (1983), 275-277

3. Durbeck, L. and Macias, N. The Cell Matrix: an architecture for Nanocomputing.
Nanotechnology 12 (2001), 217-230

4. Huang, Y., Duan, X., Cui, Y., Lauhon, L., Kim, K., and Lieber, C. Logic gates and
computation from assembled nanowire building blocks. Science 294 (2001), 1313-1317

5. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 6 (1966), 707-710

6. Macias, N. Ring around the PIG: a parallel GA with only local interactions coupled
with self-reconfigurable hardware platform to implement an O(1) evolutionary cycle for
EHW. The 1999 Congress on Evolutionary Computing (1999), 1067-1075

7. Macias, N. The PIG paradigm: the design and use of a massively parallel fine grained
self-reconfigurable infinitely scalable architecture. Proceedings of the First NASA/DoD
Workshop on Evolvable Hardware (1999), 175-180

8. Needleman, S.B. and Wunsch, C.D. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48
(1970), 443-453

9. Service, R. Molecules get wired. Science 294 (2002), 2442-2443

10. Waterfield, M.D., Scrace, G.T., Whittle, N., Stroobant, P., Johnsson, A., Wasteson,
A., Westermark, B., Heldin, C.H., Huang, J.S., and Deuel, T.F. Platelet-derived growth
factor is structurally related to the putative transforming protein p28sis of simian sarcoma
virus. Nature 304 (1983), 35-39

