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ABSTRACT 
 
 

Implementation of a Dynamic Programming Algorithm for DNA 
 

Sequence Alignment on the Cell Matrix Architecture 
 
 

by 
 
 

Bin Wang, Master of Science 
 

Utah State University, 2002 
 
 

Major Professor: Dr. Donald H. Cooley 
Department: Computer Science 
 
 
 DNA sequence alignment is an important tool for modern molecular biology. The 

algorithm used by most sequence alignment tools is the dynamic programming algorithm 

introduced by Needleman and Wunsch in 1970. This algorithm has a time complexity of 

O(n2), where n is the length of the input sequence. This dynamic programming algorithm 

has been implemented on a new parallel computing architecture called Cell Matrix. 

The approach taken in this work was to configure a block of Cell Matrix cells as a custom 

processor to perform the comparison and scoring function in the dynamic programming 

algorithm. The custom processors were then configured into a 2D array that closely 

matched the dynamic programming algorithm and allowed them to function in parallel. 

For an appropriately large Cell Matrix, the implementation in this thesis achieves a time 

complexity of O(n) in finding the optimal alignment score for two DNA sequences.   

(37 pages) 
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CHAPTER I 

INTRODUCTION 
 
 

Sequence Alignment and Molecular  
Biology 

  An organism’s genetic and functional information is stored as DNA, RNA, and 

proteins. These biological macromolecules are very complicated, composed of thousands 

or even millions of atoms chemically bonded together with complex 3-dimensional 

atomic structures. However, they are all polymer chains assembled from a fixed alphabet 

of well-understood chemicals. DNA is made up of four deoxyribonucleotides (adenine, 

thymine, cytosine, and guanine, or A T C G). RNA is made up of four ribonucleotides, 

and protein is made up of 20 amino acids. Because they are linear chains of defined 

components, they can be represented as sequences of symbols. The sequences of these 

macromolecules contain considerable information about their biological functions. In a 

DNA chain, the four deoxyribonucleotides can occur in any order, and the order they 

occur determines the DNA’s biological function. In a protein, the amino acid sequence 

determines its 3D atomic structure and function. Sequence analysis of these 

macromolecules now plays an important role in modern molecular biology. For example, 

feature detection and pattern recognition are very useful tools to understand biological 

functions of new gene sequences that have not been characterized by traditional 

molecular biological experiments. With the development of modern methods for DNA 

sequencing, a huge amount of data has been and is being generated, especially for the 

human genome project. It is impossible to do any useful sequence analysis on this scale 

without the help of a computer. Many sequence analysis tools have been developed to 
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assist molecular biologists. Because of the huge amount of data now available and the 

development of computer tools, sequence analysis is becoming increasingly powerful. 

Sequence alignment is one of the most important operations in computational 

biology, facilitating everything from identification of gene function to structure 

prediction of proteins. Alignment of two sequences shows how similar the two sequences 

are, where there are differences between them, and the correspondence between similar 

subsequences. All of this represents important information for biologists. For example, 

sequences which are similar may also share a common origin, such as a common ancestor 

sequence, and thus may have similar or related 3D atomic structure and biological 

functions. A similar subsequence between two genes with similar function might 

represent a sequence that is critical to the common function of these two genes. As a 

result, this sequence remains largely unchanged through evolution, such as the protein 

sequence that forms the catalytic center of an enzyme. In 1983 sequence alignment 

assisted in the discovery of the link between cancer-causing genes (oncogenes) and genes 

involved in normal growth and development of the cell [2, 10]. Oncogene v-sys in the 

simian sarcoma virus causes uncontrolled cell growth and leads to cancer in monkeys. 

Growth factor PDGF is a protein that exists transiently in normal cells and stimulates 

normal cell growth. When the sequences of these two proteins are aligned, they show 

over 85% similarity (Figure 1). The sequence similarity between these two proteins 

suggests that the simian sarcoma virus causes cancer by using its v-sys to stimulate cell 

growth through the same pathway as PDGF. This observation led to the conclusion that 

cancer may be caused by a normal cell growth pathway being switched on at the wrong 

time. 
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LALIGN finds the best local alignments between two sequences 
 version 2.2u00 November 2001 
Please cite: 
 X. Huang and W. Miller (1991) Adv. Appl. Math. 12:373-381 
 
alignments <  E(  0.05):score: 54 (50 max) 
 Comparison of: 
(A) @          v-sys - 245 aa 
(B) @          PDGF  - 295 aa 
 using matrix file: BL50, gap open/ext: -12/-2 E(limit)   0.05 
 
  85.5% identity in 249 aa overlap (2-245:47-295); score: 1407 E(10000): 1.8e-108 
 
              10        20             30        40        50        60        70  
v-sys  ISSIMIANSARCMAVIRSMT-----LTWQGDPIPEELYKMLSGHSIRSFDDLQRLLQGDSGKEDGAELDLNMTRS 
       : .  .::  :: :.. :.      .. .:::::::::.::: :::::::::::::.:: :.::::::::::::: 
PDGF   IENSHMANMNRCWALFLSLCCYLRLVSAEGDPIPEELYEMLSDHSIRSFDDLQRLLHGDPGEEDGAELDLNMTRS 
         50        60        70        80        90       100       110       120  
 
              80        90       100       110       120       130       140       
v-sys  HSGGELESLARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTNANFLVWPPCVEVQRCSGCCNNRNVQCR 
       ::::::::::::.::::::..:::::::::::::::::::::::::::::::::::::::::::::::::::::: 
PDGF   HSGGELESLARGRRSLGSLTIAEPAMIAECKTRTEVFEISRRLIDRTNANFLVWPPCVEVQRCSGCCNNRNVQCR 
             130       140       150       160       170       180       190       
 
        150       160       170       180       190       200       210       220  
v-sys  PTQVQLRPVQVRKIEIVRKKPIFKKATVTLEDHLACKCEIVAAARAVTRSPGTSQEQRAKTTQSRVTIRTVRVRR 
       ::::::::::::::::::::::::::::::::::::::: ::::: :::::: :::::::: :.::::::::::: 
PDGF   PTQVQLRPVQVRKIEIVRKKPIFKKATVTLEDHLACKCETVAAARPVTRSPGGSQEQRAKTPQTRVTIRTVRVRR 
        200       210       220       230       240       250       260       270  
 
             230       240      
v-sys  PPKGKHRKCKHTHDKTALKETLGA 
       :::::::: ::::::::::::::: 
PDGF   PPKGKHRKFKHTHDKTALKETLGA 
             280       290  
 
 
 
 

Figure 1. Sequence alignment of v-sys and PDGF protein sequence. Identical 
sequences are highlighted. The PDGF and v-sys sequences were obtained from the 
SWISS-PROT protein knowledgebase (http://www.expasy.ch/sprot/). Sequence 
alignment was performed using the LALIGN tool in the FASTA sequence analysis 
software package (http://fasta.bioch.virginia.edu/). 
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Dynamic Programming Algorithm for  
Sequence Alignment 

To form an alignment between two sequences, spaces may be inserted in arbitrary 

positions in the sequences so that they end up with same length, and then each character 

or space in one sequence will have a corresponding character or space in the other 

sequence.  An alignment score can then be assigned to such an alignment: if a character 

in sequence A matches its corresponding character in sequence B, it will receive a score 

of 1 (match); otherwise it will receive a score of –1(mismatch), and if one of the two 

characters is a space, it will receive a score of –2 (gap), and the total score over the whole 

sequence is the score of this alignment. The optimal alignment problem is to find the 

maximal score of all possible alignments between two sequences. This maximal score 

can be used to measure the similarity between the two sequences. This scoring scheme is 

closely related to the concept of edit distance between two sequences introduced by 

Levenshtein in 1966 [5]. The Levenshtein edit distance from sequence A to sequence B is 

defined as the minimal number of edit actions to change A into B, where the edit actions 

are substitution, insertion, and deletion. Here mismatch corresponds to substitution, and 

gap corresponds to insertion or deletion. Both of them have negative score values. In 

order to maximize the total score of alignment, the number of mismatches and gaps in the 

alignment must be minimized. 

Clearly, to solve this alignment score problem, an efficient algorithm other than 

simply generating all possible alignments between two sequences must be used. The 

number of possible alignments between two sequences increases exponentially as the 

sequences get longer. Needleman and Wunsch first introduced a dynamic programming 
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algorithm for comparing two sequences in 1970 [8]. It is the basic algorithm for most 

pair-wise sequence alignment tools used today by molecular biologists. Because of 

various applications of sequence alignment, this algorithm has been discovered and re-

discovered many times, including speech processing and text editing. The algorithm 

solves an instance of the problem by taking advantage of computed solutions for smaller 

instances of the same problem. To find optimal alignment score F[i, j] of two sequences 

s[1...i] and t[1...j], we can break it down into three smaller problems: 

• Find optimal alignment score F[i, j-1] of s[1...i] and t[1...j-1], and  

• Find optimal alignment score F[i-1, j-1] of s[1...i-1] and t[1...j-1], and 

• Find optimal alignment score F[i-1, j] of s[1...i-1] and t[1...j]. 

If we know the solutions of these three smaller problems: F[i, j-1], F[i-1, j-1], and F[i-1, 

j], we can find optimal alignment score F[i, j] of s[1...i] and t[1...j] because optimal 

alignment of s[1...i] and t[1...j] can only be one of the following possibilities: 

• Align s[1...i] with t[1...j-1] and match a space with t[j], or 

• Align s[1...i-1] with t[1...j-1] and match s[i] with t[j], or 

• Align s[1...i-1] with t[1...j] and match s[i] with a space. 

The optimal alignment scores for each are: 

• F[i, j-1] – 2 (-2 for a gap between a space and t[j]) 

• F[i-1, j-1] ± 1 (+1 for match if s[i] = t[j], -1 for mismatch if s[i] ≠ t[j]) 

• F[i-1, j] – 2 (-2 for a gap between s[i] and a space) 

Then the optimal alignment score for s[1...i] and t[1...j] is the largest value of the three: 
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This algorithm uses a (i+1)*(j+1) size score matrix F. F[m, n] is the optimal alignment 

score for s[1...m] and t[1...n]. The values for F[0, 0], F[0, n], and F[m, 0] are known:  

• F[0, 0] = 0 because it is the score of the alignment between two empty sequences.  

• F[0, n] = -2*n, F[m, 0] = -2*m because they are the scores for aligning an empty 

sequence to another sequence of length n or m, resulting in a gap of length n or m. 

Then the score matrix can be filled from F[1, 1], row by row, left to right in each row, or 

any other order that makes sure F[m, n-1], F[m-1, n-1], and F[m-1, n] are available when 

computing F[m, n]. After the whole score matrix is filled, F[i, j] will be the score for the 

optimal alignment of s[1...i] and t[1...j], and the optimal alignment can be recovered from 

the score matrix F by tracing which of the three choices was chosen to compute F[m, n] 

from F[i, j] all the way back to F[1, 1]. 

 An example of this dynamic programming algorithm is shown in Figure 2. The 

two sequences in this example are GACGGATTAG and GATCGGAATAG. The score of 

the optimal alignment is shown in the right bottom corner of the score matrix F: F[10, 

11]=6. The optimal alignment is also shown in the figure. 

 This algorithm has a space complexity proportional to the size of the score matrix 

F, which is ( )jiO × . Since the cells in the score matrix F must be filled one by one, this 

algorithm also has a time complexity of ( )jiO × , or ( )2iO  if the two sequences have 

nearly the same length, i.  
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Score matrix F: 
 
  G A C G G A T T A G 

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 
G -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 
A -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 
T -6 -3 0 1 -1 -3 -5 -5 -7 -9 -11 
C -8 -5 -2 1 0 -2 -4 -6 6 -8 -10 
G -10 -7 -4 -1 2 1 -2 -4 -6 -7 -7 
G -12 -9 -6 -3 0 3 1 -1 -3 -5 -6 
A -14 -11 -8 -5 -2 1 4 2 0 -2 -4 
A -16 -13 -10 -7 -4 -1 2 3 1 1 -1 
T -18 -15 -12 -9 -6 -3 0 3 4 2 0 
A -20 -17 -14 -11 -8 -5 -2 1 2 5 3 
G -22 -19 -16 -13 -10 -7 -4 -1 0 3 6 
 
Optimal alignment: 

 GA-CGGATTAG 
 || |||| ||| 
 GATCGGAATAG 
 

Score for optimal alignment: 
  F[10,11]=6 
 
 
Figure 2. Example of the Needleman-Wunsch algorithm for DNA sequence 
alignment.  
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           If this algorithm is implemented on a parallel computing architecture, the cells in 

the score matrix can be filled in parallel instead of one by one, and thus the time 

complexity can be greatly reduced. For example, after F[1, 1] is computed, both F[1, 2] 

and F[2, 1] are ready to be computed because all the elements needed are there: F[1, 1] 

F[0, 1] F[0, 2] for F[1, 2] and F[2, 0] F[1, 0] F[1, 1] for F[2, 1]. After F[1, 2] F[2, 1] are 

computed, F[2, 3] F[2, 2] F[3, 2] are ready to be computed. This can be done from the top 

left corner to the bottom right corner in a wave front style and computation time can be 

cut to ( )22 jiO + , which is the length of the diagonal of the score matrix F, or ( )iO  if 

the two sequences have similar lengths.  

To implement this dynamic algorithm on a parallel computing architecture, a 

large number of processors would have to be used to compute the values in score matrix 

cells in parallel. The Cell Matrix architecture provides a good parallel computing 

platform to implement this dynamic algorithm.  

 
Cell Matrix Architecture 

The Cell Matrix architecture is a nanocomputing platform developed by the 

Cell Matrix Corporation in Salt Lake City, Utah [3]. Unlike traditional CPU/memory 

architectures, the hardware of the Cell Matrix architecture is homogeneous. The basic 

element of a Cell Matrix is called a cell. Cells are repeated and interconnected to form the 

basic architecture of a Cell Matrix. Each cell accepts inputs from its neighbor cells, 

processes the inputs based on its internal reconfigurable memory, and then outputs the 

result to its neighbor cells. Cells in the architecture are physically identical, which 

simplifies the manufacture process. After manufacture, cells can be configured to 
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perform different functions, and the collection of different configured cells can form 

various digital circuits to perform complex computations. 

An example of a Cell Matrix cell is shown in Figure 3. This is a four-sided cell 

that forms a two dimensional Cell Matrix with each cell connected to four neighbors. 

Other topologies are also possible: six-sided cells can form a Cell Matrix with a 

honeycomb-like structure. Each cell has a data input, a data output, a control input, and a 

control output on each side. It also has an internal memory of 16 rows by eight columns. 

A cell can operate in one of two modes: data mode and control mode. In data mode, all of 

the control inputs are 0 and the cell is a pure combinatorial device. It uses its four data 

inputs and the internal memory to determine its outputs. In control mode, one of the four 

control inputs is 1. In this mode, the cell’s internal memory can be reconfigured. The data 

input is serially shifted into the cell’s internal memory according to a systemwide clock. 

After this cell returns to data mode, the reconfigured memory will control the cell’s 

behavior. A cell can be configured to perform many different functions, such as a piece 

of wire, a logic gate, and more complex functions. The cell shown in Figure 3 is 

configured as 1-bit full adder. It adds data inputs from north, south, carry input from 

west, and outputs the result to south and carry to west. Several such configured cells can 

be linked together to form an n-bit adder. More complex circuits can be implemented on 

this Cell Matrix architecture, such as arithmetic logic units (ALU) and memory in a 

traditional CPU/memory architecture. 

Because the cells can be individually configured, this architecture supports a one-

problem, one-machine model of computing. The circuit can be specifically designed for 

the particular problem to be solved, and thus could solve the problem faster or better than 
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Cell’s internal memory configuration: 
 

Inputs Outputs 

DN DS DW DE CN CS CW CE DN DS DW DE 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 1 0 0 
0 1 0 0 0 0 0 0 0 1 0 0 
0 1 0 1 0 0 0 0 0 0 1 0 
0 1 1 0 0 0 0 0 0 1 0 0 
0 1 1 1 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 1 0 0 
1 0 0 1 0 0 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 0 0 1 0 
1 1 0 0 0 0 0 0 0 0 1 0 
1 1 0 1 0 0 0 0 0 1 1 0 
1 1 1 0 0 0 0 0 0 0 1 0 
1 1 1 1 0 0 0 0 0 1 1 0 

 
Cell’s memory expressed using Boolean equation: 
 
   DS = DN&DS&DE + DN&~DS&~DE + ~DN&DS&~DE + ~DN&~DS&DE 
   DW = DN&DS + DS&DE + DE&DN 

 
Figure 3. A Cell Matrix cell configured as a 1-bit full adder. 
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an implementation on a general-purpose machine. This architecture also provides a good 

platform for distributed and parallel computing. Different parts of the hardware can be 

configured to perform different tasks, or similar tasks with different data. Thus, this 

problem can be distributed spatially rather than temporally achieving massively parallel 

computing. Because of its support for distributed and parallel computation, an extremely 

large number of switches can be efficiently implemented on a Cell Matrix architecture. 

An example is a DES cracker constructed using a Cell Matrix [3]. This DES cracker uses 

an array of custom processors and divides the search space efficiently among these 

processors. This design can achieve ( )1O  run time in finding an encryption key. Another 

important feature of the Cell Matrix architecture is that a cell’s internal memory can be 

reconfigured by other cells in the architecture. This leads to dynamic, self-modifying 

circuits. Some interesting examples of this feature include a ringed GA [6, 7], evolvable 

hardware, and run-time, fault-tolerant hardware. 

The dynamic algorithm for DNA sequence alignment can also be efficiently 

implemented on a Cell Matrix architecture due to its support for distributed and parallel 

computing.  The algorithm has a space complexity (number of processors) of ( )2iO  and a 

time complexity lower bound of ( )iO  when implemented on a parallel computing 

architecture. The goal of this work is to present a sequence alignment system that 

achieves this lower bound time complexity and falls within the space complexity. This 

lower bound time complexity of ( )iO  has not been achieved yet and no research has 

demonstrated such a sequence alignment machine. The approach taken in this work is to 

configure a block of cells in a Cell Matrix as a custom processor to perform the function 



  12 
of computing the values in the score matrix F. Parallelism is archived by linking these 

custom processors into a 2D processor array. Each of the processors constantly computes 

its value based on its inputs and outputs its result to the next processor. Sequence data are 

input from the top and left edges of the 2D array. When the processor array is stabilized, 

the right bottom processor unit contains the value of the optimal alignment score.  

A different approach to this problem is to code the algorithm for a multiprocessor 

machine or a cluster of machines. However, to achieve the lower bound time complexity, 

an extremely large number of processors are needed. Processor latency and inter-

processor communication delay will become a serious problem. The approach taken in 

this work allows a system design that closely resembles the original algorithm. And, by 

carefully designing the custom processor, the processor latency and interprocessor 

communication can be greatly reduced, resulting in a better constant factor for the time 

complexity. Also, because the custom processor is much simpler than a general purpose 

processor, the hardware requirement is reduced.  
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CHAPTER II 

 
DESIGN AND IMPLEMENTATION 

 
 

Processor Design 

Implementation of this dynamic algorithm on a parallel computing architecture, 

such as a Cell Matrix, requires a 2D array of processors. Each processor is responsible for 

the value of one cell in the score matrix, and they work in parallel to compute the values 

in the score matrix. In the Cell Matrix architecture, a block of Cell Matrix cells can be 

configured as such a custom processor. Figure 4A shows the basic design of the custom 

processor unit. The processor unit has five inputs, two of which contain the sequence data 

s[i] and t[j]; the other three inputs are computed as score matrix cell values from its 

neighboring processors. The processor performs the following function:  








−−
±−−

−−
=

2],1[

1]1,1[

2]1,[

],[

jiF
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jiF
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The processor compares the sequence data inputs s[i] and t[j], and adds or subtracts one 

from F[i-1, j-1] according to the comparison result. It also subtracts two from F[i, j-1] and 

F[i-1, j]. These three results are then compared. The largest one is the value of F[i, j] and 

this value is passed to its neighboring processors, which use this value to compute their 

values.  

  There are several basic circuits in the processor. Each performs a simple 

function, and they work together to perform the function of computing a value for the 

score matrix. These basic circuits are shown as boxes inside the processor in Figure 4A. 

First, a sequence comparison unit is required to compare the sequence data s[i] and t[j].  
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                       Figure 4. Custom processor design.  

A 

B 
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The result of this comparison is used to control the +/-1 unit, which adds or subtracts 

one from F[i-1, j-1] according to the result of the comparison. Two –2 units are used to 

subtract 2 from F[i, j-1] and F[i-1, j]. And finally a MAX unit is used to select the largest 

value and pass the value to its neighboring processors. 

 This design requires the processor exchanging information with its six neighbors, 

two of which are on its diagonal, F[i-1, j-1] and F[i+1, j+1]. However, four-sided cells in 

a Cell Matrix cannot directly pass information diagonally, because data inputs/outputs are 

only on the side of the cell and diagonally linked cells do not share sides or data 

inputs/outputs. So this kind of information exchange must be routed through their 

neighbors, and the scheme shown in Figure 4B is a method to do so. Here, each processor 

unit will have an extra input and an extra output connected directly to each other in its 

upper right corner. This connection can pass information from the neighbor above it to 

the neighbor on its right. Otherwise these two diagonally linked processors cannot 

exchange information.  

 In this design, different values in the sequence data are represented using 3 bits: 

000 for A, 001 for G, 010 for C, and 011 for T. The first bit is reserved for other possible 

sequence data values, such as U (uracil) in the RNA sequence, or N for bad sequence 

read out. Values in the score matrix F are represented using 9 bits. The first bit is the sign 

bit. Negative numbers are represented in 2’s complement format. This gives a range of  

-256 to +255, which is enough to align two DNA sequences up to 127 base pairs. This 

architecture can be easily scaled up for longer sequence alignment.  



 16 
Implementation on Cell Matrix  
Architecture 

 The custom processor was designed and implemented using the Cell Matrix 

Layout Editor development tool from the Cell Matrix Corporation. This Layout Editor 

provides a graphical user interface for designing Cell Matrix circuits. It allows the 

developer to lay out four-sided Cell Matrix cells in a 2D grid, edit the content/memory of 

individual cells, and create circuits using collections of differently configured Cell Matrix 

cells. It provides several other useful functions, such as copy and paste cells, rotate cells 

within the grid, and create icons to represent different cells. And finally, the grid 

containing the circuit can be written out as a .bin file, which can be read and tested using 

the Cell Matrix Simulator.  

  The sequence comparison unit requires a 3x3 Cell Matrix block shown in Figure 

5A. Sequence data inputs are on the top and left edges of the unit. Corresponding bits of 

the sequence data are compared, and the output of the unit is the logical AND of the three 

individual bit comparison results. This sequence comparison unit’s output is 1 when two 

input sequence data are the same, and 0 otherwise. The truth table configurations for each 

of the nine cells are shown in Figure 5B. This sequence comparison unit also allows the 

sequence data to pass through, so that the custom processor can pass the sequence data to 

its neighboring processors.  

Since all negative numbers are represented in 2’s complement format, all addition 

and subtraction can be performed using adders. As shown in Chapter I, a Cell Matrix cell 

can be configured as a 1-bit full adder, and several such configured cells can be linked to 

form an n-bit adder. Figure 6A shows another configuration of a 1-bit full adder. Its icon 
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                      Figure 5. Sequence comparison unit. 
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Figure 6.  A Cell Matrix cell configured as a 1-bit full adder and a 
9-bite adder.  
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is shown on the left and its truth table is shown on the right. It adds data inputs from 

west and east, carry input from the south, and outputs its sum to the east and carry to the 

west. The custom processor requires a 9-bit adder since all values are represented using 

nine bits. A 9-bit adder can be formed by stacking nine 1-bit full adders vertically, as 

shown in Figure 6B.  Data inputs are on its left and right, with high order bit on the top, 

low order bit on the bottom. Carries are passed from bottom to top. The adder sends the 

results to its right. The +/-1 unit and –2 unit are all based on this 9-bit adder. 

The +/-1 unit adds 1 or –1 to an input value according to the output of the 

sequence comparison unit. The sequence comparison unit outputs 1 when s[i]=t[j], and 

the processor adds 1 to F[i-1, j-1]. Otherwise, sequence comparison unit outputs 0, and 

the processor adds –1 to F[i-1, j-1]. In the +/-1 unit, F[i-1, j-1] is one of the two inputs of 

the 9-bit adder. The other input of the adder is either 1 or –1, and this is controlled by the 

sequence comparison unit. This input should be 1 when the sequence comparison unit’s 

output is 1 (s[i]=t[j]), and –1 when the output is 0 (s[i]≠t[j]). This can be achieved by 

setting the eight higher order bits to the inverse of the output of the sequence comparison 

unit and lowest order bit to 1, because 1 is 000000001 and –1 is 111111111 when 

represented using nine bits and in 2’s complement form. A block of nine cells can be 

configured to perform such a function as shown in Figure 7A. These nine cells send a 9-

bit value to the adder on its left. The control input is on the top and passed to all nine 

cells. The eight higher order bits are the reverse of the control input, and the lowest bit is 

set to one at all times. The 9-bit value sent to the adder is 000000001 (=1) when control 

input is 1, and 111111111 (=-1) when control input is 0. The adder adds this value to the 

F[i-1, j-1] input on its left, and sends the result to its right. 
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Figure 7.  +/-1 unit and –2 unit design. 
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            The –2 unit is very similar to the +/-1 unit. Because it always subtracts 2 from 

its input, there is no need for a control input. The adder in this unit will always have an 

input of –2. The 2’s complement form of -2 is 111111110. The nine cells used to send +/-

1 to the adder can be configured to send this value to the adder at all times. The other 

input to the adder will be F[i-1, j] from the neighboring process to the left, or F[i, j-1] 

from the neighboring processor above. Figure 7B shows a vertically configured –2 unit 

with high order bit on the top and low order bit on the bottom. This is used for F[i-1, j], 

which is passed to the unit from the left.  Since F[i, j-1] comes from the top, a 

horizontally configured –2 unit in Figure 7C is used. The input is on the top of the unit 

with high order bit on the left and low order bit on the right, and output is on the bottom 

of the unit. 

The sign bit of A-B can be used to compare A and B. If the sign bit of A-B is 0, 

then A-B is positive and A≥B. If the sign bit of A-B is 1, then A-B is negative and A<B. 

A-B can be performed using an adder if –B is represented in 2’s complement form. To 

represent –B in 2’s complement format, every bit in B is inverted and then 1 is added. 

This operation can be performed using a modified adder as shown in Figure 8A. Data 

input is at the bottom of the unit with high order bit on the left and low order bit on the 

right. The bottom nine cells invert all nine bits in the data input and pass them to the 

nine-bit adder in middle of the unit. The top nine cells send 000000001 to the adder. The 

adder in the middle adds this 000000001 to the inverted data input and sends result to the 

top. The function of this 9x3 cellblock can also be performed using just nine cells, as 

shown in Figure 8B. Another adder can be added to this unit to perform the function of 

A-B, as shown in Figure 8C. Data B input is on the bottom of the unit. After data pass 
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Figure 8. Modified adder to perform the function of A-B. 
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through the bottom nine cells, B becomes –B. –B is then passed to the adder on top. 

Data A input is on the top of the adder. The adder adds A to –B. The sign bit on the very 

left shows which number is larger. This sign bit is the output of this unit and passed to the 

right side. This output can be used to select the larger of the two inputs. 

Figure 9A shows a MAX selection unit. This unit is composed of a 9x2 A-B unit 

on the top and a 9x9 selection unit on the bottom. Two data inputs A and B are on the top 

and left of the unit. Data B is passed to the A-B unit by the selection unit. The sign bit of 

A-B is passed to the selection unit as a selection signal. This signal is 0 when A≥B and 1 

when A<B. The cells on the diagonal have three inputs: A from the top, B from the left 

and the selection signal from the right. It also passes B from its left to the A-B unit on the 

top. The output of these cells depends on the selection signal. If A≥B, they will receive 

selection signal 0 and output A. Otherwise, they output B. Thus, this MAX unit can be 

used to select the larger of its two inputs. To select the largest value from three numbers, 

as required in this custom processor, two of these MAX units can be linked together, as 

shown in Figure 9B. A and B are the inputs of the first MAX unit. The output of this unit 

is MAX (A, B). MAX (A, B) and C are the inputs of the second MAX unit. The output of 

the second MAX unit is MAX (A, B, C). 

The Cell Matrix implementation of the custom processor is shown in Figure 10. It 

is composed of the basic processing elements shown in previous figures. The processor 

has six inputs and six outputs. Sequence data s[i] and t[j] are compared in the sequence 

comparison unit at the top left corner of the processor. The comparison result is then 

linked to the control input of the +/-1 unit. F[i-1, j-1] input is on the middle of the left 

edge and linked to the +/-1 unit. The output of +/-1 unit, F[i-1, j-1]±1, is connected to the  
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Figure 10. Cell Matrix implementation of the custom processor. 
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MAX selection unit. F[i, j-1] input is on the middle of the top edge. It is connected to a 

horizontally configured –2 unit. F[i, j-1]-2 is then connected to the MAX selection unit. 

F[i-1, j] inputs is also connected to a –2 unit, F[i-1, j] is the third input of the MAX 

selection unit. The output of the processor is the output of the MAX selection unit. On the 

top right corner is a direct pass for F[i, j-1]. This is necessary as processor [i, j-1] and 

[i+1, j] cannot communicate directly. 

A 2D array using this custom processor configuration is thus able to perform 

DNA sequence alignment. As discussed in Chapter I, the algorithm requires that F[0, 0], 

F[0, n], and F[m, 0] to be initialized to F[0, 0]=0, F[0, n]= -2*n and F[m, 0]= -2*m. Cell 

Matrix circuitry can be added to the top and left edges of the 2D processor array to 

initialize these values. The repeating units of the circuitry are shown in Figures 11A and 

B. They use the -2 unit discussed previously to automatically generate the values required 

for initialization. The 2D processor array together with these initialization circuits is 

shown in Figure 11C. The two sequences are inputs on the top edge and left edge of this 

2D processor array, and the right bottom corner of the processor array will have the 

optimal alignment score of these two sequences. 
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CHAPTER III 

 
RESULTS AND CONCLUSIONS 

 
 

Testing Results 

The testing of the design and implementation was done by first testing the low- 

level components of the processor, and then testing the processor array using a 

representative sample of input sequences.  

All the circuitries used in the custom processor and the custom processor itself 

were tested using the Cell Matrix Simulator from the Cell Matrix Corporation. This 

simulator is a testing and debugging tool. After a circuit is designed using the Layout 

Editor, the configurations of the cells in the circuit are written into a binary grid file, and 

then read into the simulator. The simulator provides a graphical user interface for the 

developers to test their circuit with different inputs, observe the behavior of the circuit, 

and modify the configuration of individual cells for debugging.  

Figure 12 shows the circuit used in the MAX unit to obtain the sign bit of A-B. 

Each box in the figure represents a Cell Matrix cell. The arrows represent inputs and 

outputs of the cells - thin lines are 0’s and thick lines are 1’s. The inputs of the cells at the 

top left edge of the matrix can be changed by clicking on the arrows. Changes in the input 

are propagated through the circuit. Input B, on the bottom of the circuit, cannot be 

changed directly. Additional circuits were added to route B to the left edge of the matrix. 

In this figure, input A is 000110011 or 51, and input B is 001101010 or 106. The output 

at the top right corner shows the sign bit of A-B as 1, indicating A<B. Similar tests were 

done on other components of the processor to make sure they functioned as designed. 
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Figure 12. Cell Matrix circuit for A-B tested using a Cell Matrix Simulator. 
A graphical window from the Cell Matrix Simulator, thin lines are 0’s and 
thick lines are 1’s. Input A 00011011 is on the top and input B 001101010 is 
on the left, sign bit of A-B, which is 1, is on the top right corner.  
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The custom processor was configured into a 2D processor array as shown in 

Figure 11C to perform sequence alignment. This required a very large number of Cell 

Matrix cells ( 2675 n× , n is the length of the sequence). The simulator with its graphical 

user interface is designed for a small number of Cell Matrix circuits. It works well for 

testing and debugging such circuits, but it is slow for large circuit simulations. Another 

simulator designed for large-scale simulation is available from the Cell Matrix 

Corporation. This simulator provides similar functions through a command line interface 

and supports batch execution of commands stored in files. Useful commands include: l, 

load cell configuration stored in a binary grid file into the simulator; s, set the input of a 

specific cell (this can be used to set the sequence input); p, show the input/output of a 

block of cells (this can be used to exam the output of the processor array). This command 

line driven simulator can handle much larger Cell Matrix circuits and the simulation is 

much faster. The 2D processor array was tested with different sequence pairs, such as the 

example shown in Chapter I. The processor array correctly computed the optimal 

alignment scores for all sequence alignments tested (Figure 13). These tests showed that 

the design and implementation of the custom processor are correct.  

 
Timing of the Alignment 

The goal of this research was to design a Cell Matrix circuit that could find the 

optimal alignment score of two DNA sequences in ( )nO time. To obtain timing 

information about the sequence alignment circuit, the command line driven simulator was 

modified by Nicholas J. Macias of the Cell Matrix Corporation to incorporate the 

capturing of time units and timing results. After the input to the circuit is changed, i.e., a  
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Figure 13. Testing of the custom processor array. 
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new pair of sequences to align, the changes are propagated through the Cell Matrix 

circuit. It then takes some time for the circuit to stabilize. This time was measured by the 

simulator. The unit of this measurement, represented using symbol “t”, is the propagation 

delay of a single Cell Matrix cell, or the time for a Cell Matrix cell to respond to an input 

change. More formally, the measurement is of the time from input change to stable output 

change in the cell.  

For a DNA sequence alignment circuit, the optimal alignment score was obtained 

after the processor array had stabilized. Thus, the time for the circuit to stabilize is the 

time for the circuit to compute the optimal alignment score. This processor array is 

guaranteed to stabilize, since the processors perform simple combinational logic and the 

communication between processors is also formed by simple combinational logic. 

Measuring this time for processor arrays of different sizes shows how the computation 

time increases with the sequence length.  

The test timing results are shown in Figure 14. The time to compute the optimal 

alignment score increases linearly with the length of the input sequences: ntT ×≈ 80 , 

where T is the total compute time, t is the time delay for a single Cell Matrix cell, and n is 

the length of input sequences. The results show that this design achieved the goal of 

finding the optimal alignment score for two sequences in ( )nO  time. 

 
Discussion   

 This implementation of the dynamic programming algorithm is the first sequence 

alignment system that achieves ( )nO time complexity. The major cost here is hardware, 

not the computing time. Instead of computing the values in the score matrix F for two  
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sequences of length n one by one using a traditional CPU/memory computer with its 

single processor, a 2D nn×  array of simpler custom processors was used. The problem 

of finding the optimal alignment score was broken down into smaller tasks. These smaller 

tasks were then distributed spatially over the processor array and performed in parallel by 

individual processors in the array. As the length of the sequence increases, the size of the 

processor array, or the hardware cost, also increases. Because the hardware cost increases 

with a complexity of ( )2nO , hardware cost becomes an important issue for long sequence 

alignments.  

DNA sequences encoding protein domains are typically about 1000 base pairs 

long. Aligning two such sequences would require a processor array of size 106. Each 

custom processor is 675 Cell Matrix cells in this design. So the processor array would 

require about 7x108 cells. Current silicon techniques will scale up to about 500,000 cells 

in a single chip [3], which is only enough to align two sequences of 30 base pairs each. 

Thus, to use the Cell Matrix architecture, much denser manufacturing techniques are 

required [3]. With the advent of nanotechnology, biology-based computing, and other 

molecular engineering techniques, extremely large Cell Matrix configuration will be both 

possible and practical [3]. The development of the nanocircuit has just been named the 

breakthrough of the year by Science magazine [9]. Examples of the experimental 

nanocircuit include carbon nanotube transistors [1] and logic gates made of nanowires 

[4]. Although these nanocircuits are still very simple and rudimentary, they show 

feasibility of nanocomputing. When the technology for manufacturing extremely dense 

circuits becomes available, the amount of hardware required will be acceptable, and 

trading hardware for reduced computing time will be reasonable.  
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The timing result given by the Cell Matrix simulator is in terms of an abstract 

unit t, which is the typical delay of a single Cell Matrix cell. This sequence alignment 

system is a pure combinatorial circuit, and the computing time is a pure function of this 

propagation delay t. This time t will depend on the underlying technology. By building a 

small Cell Matrix on top of a FPGA and constructing a 128-cell feedback loop, the Cell 

Matrix Corporation has shown that this single cell propagation delay t is approximately 

3.9 ns. Using this value, the computing time for alignment is about 80t per base pair, or 

about 0.3 µs per base pair. And this is an upper bound, since a FPGA implantation is 

slower than custom ASIC, and likely slower than future technologies. If a large enough 

Cell Matrix were available, it would align two sequences of 3 million base pairs each in 

under one second. Of course, such a Cell Matrix would be extremely large, i.e., ≈ 1014 

cells. 

 An interesting observation in the testing is that the Cell Matrix architecture is a 

powerful parallel computing architecture. The simulator runs on a single CPU computer, 

and handles a single event at a time. Thus, events that should happen at the same time, or 

parallel events, are put into an event queue with a time tag. The size of the queue limits 

the maximum number of parallel events the simulator can handle. During testing, a Cell 

Matrix circuit used to align two sequences with five base pairs each overflows an event 

queue with 2 million events entries. And the circuit is a relatively small one, with less 

than 20,000 cells. This really shows the power of Cell Matrix architecture dealing with 

parallel computing problems. 
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Summary and Future Work 

 This research work implemented a dynamic algorithm for DNA sequence 

alignment on the Cell Matrix architecture and achieved ( )nO  time complexity in 

finding the optimal alignment score. This work also showed that Cell Matrix 

architecture is a powerful parallel computing architecture.  

 Another important problem after finding the optimal alignment score is to recover 

the actual alignment from the score matrix F.  Solving this problem will not only show 

how similar two sequences are, but also where the similarities are. This would be an 

interesting work based on this implementation. It would also be interesting to include 

some improvements of the alignment algorithm into the design, such as a nonlinear gap 

function (a big penalty for gap opening and a small penalty for gap extension, which is 

more appropriate for biological evolutions), and a more complex scoring system for 

protein sequence alignment. 
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